Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering

BEC301 Signals and Systems Third Semester, 2016-17 (Odd Semester)

Course (catalog) description

This course is about various classification of both continuous and discrete time signals and systems. The spectral analysis of periodic & aperiodic signals using Fourier series and Fourier transform is discussed for both CT as well as for DT signals. Analysis and characterization of the CT-LTI systems through Laplace Transform and Fourier Transform and for LTI-DT systems through Z Transform and DTFT is also discussed.

Compulsory/Elective course	: Compulsory for ECE students		
Credit hours	: 4 credits		
Course Coordinator	: G.Kanagavalli, Asst. Professor, Department of ECE		

Instructor(s)

Name of the	Class		Office	Email	Consultation
instructor	handling	Office location	phone	(domain: @bharathuniv.ac.in)	
Ms.G.Kanagavalli	II year ECE	SA006		Kanagavalli.ece@ bharathuniv.ac.in	12.30 - 1.30 PM
Mr Srinivasan	II year ECE	SA006		Srinivasan.etc@ bharathuniv.ac.in	12.30 - 1.30 PM

Relationship to other courses

Pre – requiste : BEC 201- Mathematics II

Assume Knowledge : Basic knowledge in algebra and complex integration, partial differential equations

Following courses : BEC505 Digital Signal Processing

Page 2 of 7

UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS

Continuous time signals (CT signals), discrete time signals (DT signals) - Step, Ramp, Pulse, Impulse, Exponential, Classification of CT and DT signals - periodic and aperiodic, random signals, CT systems and DT systems, Classification of systems - Linear Time invariant Systems.

UNIT II ANALYSIS OF C.T. SIGNALS

Fourier series analysis, Spectrum of C.T. signals, Fourier Transform and Laplace Transform in Signal Analysis.

UNIT III LTI-CT SYSTEMS

Differential equation, Block diagram representation, Impulse response, Convolution integral, Frequency response, Fourier Methods and Laplace transforms in analysis, State equations and Matrix.

UNIT IV ANALYSIS OF D.T. SIGNALS

Spectrum of D.T. signals, Discrete Time Fourier Transform (DTFT), Discrete Fourier Transform (DFT), Properties of Z-transform in signal analysis.

UNIT V LTI-DT SYSTEMS

Difference equations, Block diagram representation, Impulse response, Convolution SUM, Frequency response, FFT and Ztransform analysis, State variable equation and Matrix.

Text book(s) and/or required materials

TEXT BOOK:

T1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, "Signals and Systems", Pearson, 2007.

REFERENCES:

R1. B. P. Lathi, "Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.

R2. R.E.Zeimer, W.H.Tranter and R.D.Fannin, "Signals & Systems - Continuous and Discrete", Pearson, 2007.

R3. John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2007

Computer usage: Nil

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area : Communication | Signal Processing | Electronics | VLSI | Embedded

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 2 nd week	Session 1 to 18	2 Periods
2	Cycle Test-2	September 2 nd week	Session 19 to 36	2 Periods
3	Model Test	October 2 nd week	Session 1 to 60	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Syllabus Contents

12

12

12

12

12

This course provides the foundation education in circuit analysis. Through lecture, laboratory, and out-of-class assignments,		Correlates to program outcome		
students are provided learning experiences that enable them to:	Н	М	L	
1. Various Classification of both CT and DT signals and systems	a,e	b,d	-	
2. Spectral analysis of CT signals using CT Fourier methods.	a,e	d	j	
3. Analysis and Characterization of the CT systems through Laplace Transform and Fourier Transform.	d,e	а	-	
4. Spectral analysis of DT signals using DT Fourier methods	е	g,k	-	
5. Analysis and Characterization of the DT systems.	а	b,d,f,j	-	

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Sess	ion Topics	Problem solving(Yes/No)	Text/Chapter
UNIT-	I: CLASSIFICATION OF SIGNALS AND SYSTEMS	•••••	•
1.	Continuous time signals Discrete time signals	No	
2.	Periodic and Aperiodic signals, Even and odd signals	Yes	
	Tutorial (Problems in Periodic and Aperiodic signals, Even and odd signals)	Yes	
	Deterministic and random signals. complex exponential and Sinusoidal signals	No	
5.	Tutorial (problems in CT and DT exponential and sinusoidal signals	Yes	
6.	Energy and power signals , Deterministic and random signals Unit step, Unit ramp, Unit impulse	No	
7.	Tutorial(Problems in Energy and power signals , Deterministic and random signals	Yes	[T1]-Chapter-1
	Representation of signals in terms of unit impulse, Basic operations on signals	No	
9.	Continuous time systems and Discrete time systems, Linear system , Time Invariant system	No	
	causal system, BIBO system , Systems with and without memory , LTI system	No	
11.	Tutorial(Problems in Linear system , Time Invariant system)	Yes	
	Tutorial(Problems in causal system, BIBO system , Systems with and without memory , LTI system	Yes	
UNIT-	II: ANALYSIS OF CONTINUOUS TIME SIGNALS		
13.	Representation of Continuous time Periodic signals	No	
14.	Properties of Continuous time Fourier series .	No	
15.	Trigonometric Fourier series analysis	No	
	Tutorial (Problems in Trigonometric Fourier series analysis	Yes	
17.	complex exponential Fourier series analysis	No	

18.	Tutorial (Problems in complex exponential Fourier series analysis)	Yes	
19.	Parseval's relation – Frequency spectrum – Power density spectrum	No	[T1]-Chapter-3
20.	Fourier transform: Representation of Continuous time signals-	No	-
	Properties of Continuous time Fourier transform – Energy density spectrum	No	[T4] Observation 4
	Tutorial (Problems in Continuous time signals using Fourier transform)	Yes	-[T1]-Chapter-4
24.	Laplace Transform using Signal analysis Tutorial (Problems in Continuous time signals using Laplace transform)	No Yes	[T1]-Chapter-5
	III: LTI CT SYSTEM		
25.	Differential equation	No	
	Tutorial (Problems in Differential equation-)	Yes	_
	Natural response, Forced response using classical method	No	
28.	Tutorial (Problems in Natural response, Forced response using classical method)	Yes	
29.	Impulse response, step response	No	_
	Tutorial (Problems in impulse response, step response)	Yes	-
	Convolution Integral	No	-
32.	Tutorial (Problems in Convolution)	Yes	
33.	Block Diagram Representation- Direct Form I, Direct Form II	Yes	[T1]-Chapter-9
34.	Block Diagram Representation- Cascade Form, Parallel Form	Yes	
35.	Tutorial (problems in Analysis and characterization of LTI system using Laplace transform and Fourier transform)	Yes	
36.	Tutorial (Problems in Analysis & characterization of LTI system	Yes	-
	using Laplace transform) V ANALYSIS OF D.T. SIGNALS		[T1]-Chapter-9
37.	Spectrum of D.T. signals	No	
	Representation of sequences – Discrete time Fourier transform	No	-
39.	Tutorial (Problems in Representation of sequences – Discrete time Fourier transform (DTFT)	Yes	_ [T1]-Chapter -5
	Discrete Fourier transform (DFT) and its inverse	No	
	Properties of DFT	No	
42.	Convolution Properties of DFT	No	-
	Tutorial (Problems in Discrete Fourier transform (DFT) and its properties)	Yes	-
44.	Tutorial (Problems in Discrete Fourier transform (DFT) and its properties)	Yes	
	Z-Transform and its Region of Convergence	No	[T1]-Chapter 10
	Properties of Z-Transform	No	
	Tutorial (Problems in Z -Transform and its properties)	Yes	
	Tutorial (Problems in Z -Transform and its properties)	Yes]
	V LTI-DT SYSTEMS		
	System modeling in terms of difference equation	No	
	Natural response, Forced response using classical method	No	
	Tutorial (Problems in Natural response, Forced response using classical method)	Yes	
	Impulse response, step response	No	1
	Tutorial (Problems in impulse response, step response)	Yes	1
	Convolution Sum	Yes	
54.		Yes Yes	-
54. 55.	Convolution Sum		-

58 .	State variable equations and matrix	Yes	
59.	Tutorial (problems in Analysis and characterization of LTI system	Yes	[T1]-Chapter 10
	using Fourier transform)		
60 .	Tutorial (Problems in Analysis & characterization of LTI system	Yes	
	using Z transform)		

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

-	10%
-	10%
-	25%
-	5%
-	50%
	- - -

Prepared by: G.Kanagavalli, Assistant Professor, Department of ECE

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

- a) an ability to apply knowledge of mathematics, science, and engineering fundamentals.
- b) an ability to identify, formulate, and solve engineering problems
- c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

d)an ability to design and conduct experiments, as well as to analyze and interpret data

e)an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

- f)an ability to apply reasoning informed by a knowledge of contemporary issues
- g)an ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- h) an ability in understanding of professional and ethical responsibility and apply them in engineering practices
- i) an ability to function on multidisciplinary teams
- j) an ability to communicate effectively with the engineering community and with society at large
- k) an ability in understanding of the engineering and management principles and apply them in Project and finance management as a leader and a member in a team.
- I) an ability to recognize the need for and an ability to engage in life-long learning.

Program Educational Objectives

PEO1: PREPARATION:

To provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Electronics And Communication Engineering.

PEO2: CORE COMPETENCE:

To enhance the skills and experience in defining problems in Electronics And Communication Engineering design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

To enhance their skills and embrace new Electronics And Communication Engineering Technologies through self-directed professional development and post-graduate training or education

PEO4: SKILL:

To provide training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Apply the ethical and social aspects of modern communication technologies to the design, development, and usage of electronics engineering.

Course Teacher	Signature
G.Kanagavalli	
Srinivasan	

Course Coordinator (G.Kanagavalli)

Academic Coordin	ator
()

Professor In-Charge ()

HOD/ECE (Dr.M.Sundararajan)